
Saraswati Mishra. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 8, (Part -5) August 2016, pp.67-71

 www.ijera.com 67 | P a g e

An Efficient Method of Partitioning High Volumes of

Multidimensional Data for Parallel Clustering Algorithms

Saraswati Mishra
1
, Avnish Chandra Suman

2

1
Centre for Development of Telematics, New Delhi - 110030, India.

2
Centre for Development of Telematics, New Delhi - 110030, India.

ABSTRACT
An optimal data partitioning in parallel/distributed implementation of clustering algorithms is a necessary

computation as it ensures independent task completion, fair distribution, less number of affected points and

better & faster merging. Though partitioning using Kd-Tree is being conventionally used in academia, it suffers

from performance drenches and bias (non equal distribution) as dimensionality of data increases and hence is

not suitable for practical use in industry where dimensionality can be of order of 100’s to 1000’s. To address

these issues we propose two new partitioning techniques using existing mathematical models & study their

feasibility, performance (bias and partitioning speed) & possible variants in choosing initial seeds. First method

uses an n-dimensional hashed grid based approach which is based on mapping the points in space to a set of

cubes which hashes the points. Second method uses a tree of voronoi planes where each plane corresponds to a

partition. We found that grid based approach was computationally impractical, while using a tree of voronoi

planes (using scalable K-Means++ initial seeds) drastically outperformed the Kd-tree tree method as

dimensionality increased.

Keywords: Clustering, Data Partitioning, Parallel Processing, KD Tree, KD-Tree, Voronoi Diagrams

I. INTRODUCTION
While profiling a hybrid (parallel &

distributed) implementation of OPTICS (Goel et all.,

2015) algorithm we had an observation that over

50% our threads were outperforming the rest by

huge margins. Our method was to 1. partition

existing data into x parts 2. treat each part as a

separate input and run the parallel OPTICS thread on

each 3. merge the resultant clusters. We used Kd –

tree (Bentley, 1975) to make partitions. K-d tree is a

variance of binary tree where each node represents a

data point in n-dimensional space. Every leaf node

of k-d tree represents a splitting of a (n-1)

dimensional hyper-plane resulting in two half-planes

which can be thought of as partitions. Following

method was used.

1. Start with dimension with highest variance and

divide data set based on value points in that

dimension only. Result is two different

partitions.

2. Repeat the process with next dimension of

highest variance until desired numbers of

partitions are made.

A sample representation will look

something like this

Figure 1 : Kd-Tree Partitioning

We observed various limitations. Assume x

partitions, n data points, m partitions , d dimensions

1. Data scan was needed in every stage i.e. for

getting m partitions we needed O(m) scans over

same points again and again.

2. Median finding was a costly operation of order

O(n). However when executed for every non-

leaf node , the overall cost was of order O(mn)

3. K-d tree doesn't guarantee considering every

dimension. In-fact there it exhibits a bias

towards a few dimensions of high variance,

hence points in a partition can be relatively

RESEARCH ARTICLE OPEN ACCESS

Saraswati Mishra. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 8, (Part -5) August 2016, pp.67-71

 www.ijera.com 68 | P a g e

far than points in different dimensions for a

large d. This well lead to a poor clustering

result. Also as the number of dimensions tend to

increase, the performance of k-d tree with

regards to bias decreases.

4. Partitions are half planes. They a general

tendency to result in more number of affected

points in uniformly or near-uniformly

distributed space.

5. No inherent merging structure. A merging

strategy needs to be implemented

The most concerning of these at that time

for us was 1 & 2 as they were highly serial and slow

part of our parallel implementation. We wanted to

optimize the multiple passes over data to as few as

possible. Also we wanted a better way to finding

median or near median. In next part we will see how

we tried solving 1 & 2 by splitting our d-

dimensional space into d-cubes such that in a single

pass we determine the points in every cube & their

cardinality and other computations which improves

median finding performance significantly. However

we soon realized the impractical aspects of our

approach and it inherently lacking the solutions to 3,

4 & 5. We moved on to next approach where we

partition our space using n-dimensional voronoi

diagrams and found it to be extraordinarily

outperforming kd-tree with proper initial seeds.

II. N-CUBE BASED APPROACH
The proposed partitioning approach works

by initially dividing the n-dimensional space into n-

Cubes by making y splits along each dimension so

that we obtain (y+1)^n cubes.

The basic idea here is to create an overall

index (a close in summary in space based on cubes)

such that for any partitioning computation, we only

need to use this summary and not the entire data. n-

Cubes work as following

Algorithm : Construct Cubes

Input: Set of x points p in space (p1,p2….px) where

each px is (x1,x2..xn).

Number of partitions m

k : a natural number 1<=k

Higher values for k ensures better overall

distribution but lower performance.

Output: Set of Cubes (c1, c2 …. cm) where m =

(y+1)^n

Procedure :

Finding an optimal y & initializing cube

boundaries

Let minxn be min (px) in nth dimension

Let maxxn be max (px) in nth dimension

Let Y = ky. Let M = (Y+1)^n

for each ci in (c1...cM)

Boundary(cMn)= {(i-1)*(maxn-minn)/M, i*(maxn-

minn)/M}

Binary sort c

For each pi in (p1...px)

Find pi’s location in p.

Add pi to cM

cM.totalPonits++

Algorithm Find Median

Input : Set of Cubes (c1...cM), Total Points

Output : Median along a dimension n say mn

Procedure :

P : total ponits in space

X=0;

While X<P/2

Move to next cube , x = x+Cm.totalPoints

#We stop at the cube that contains our median (or a

a close approximation if k is too low or too high)

 Find median of set of points in Cm.

We can see that cube creation is an

O(n+logn) task while median creation is an O(n/M)

task which looks very efficient . The approach

should have worked in two passes over data plus a

single pass on grid cells. However there were major

design & implementation issues with this approach

1. The number of cubes is (y+1)^n. Even if y is 2,

for a huge n, we get 2^n cells. This grows closer

to total number of data points.

2. Programmatically unfeasible in direct sense.

Accessing n-dimensional arrays needs n loops,

we don’t know n beforehand. Solution is to

convert n-d cells to 1 d ... (Very Very long 1 d

array). Unable to allocate memory on stack for

the 1-d array.

3. Too many cells, sparse cells, data distribution

across cells not uniform at all.

4. Most of the partitions will be empty, even when

the number of data points N is large, leading to

extreme waste of memory and CPU time.

5. Hence we conclude that the method was Not

Suitable for >2d data

6. Didn’t solve problem of bias but worsened tends

to worsen it with a higher cubes number

III. VORONOI DIAGRAM BASED

PARTITIONING
Our second approach involves voronoi

diagrams (Aurenhammer,1991). Our goal is to

construct a partitioning scheme that handles high-

dimensionality as well and not just provide good

performance by ignoring a lot of dimensions. Also it

is necessary that partitions should not hold too many

or too few points. Number of passes on data should

be as less as possible preferably ~1.

An efficient way to satisfy problem 1 & 2

of kd-tree is a tree structure that needs O (log n)

number of comparisons on average to distribute a

Saraswati Mishra. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 8, (Part -5) August 2016, pp.67-71

 www.ijera.com 69 | P a g e

point and to determine the affected partitions where

n is the number of nodes in the tree. One way to

satisfy problem of considering all dimensions all

together is to use a Voronoi diagram which

partitions the space into Voronoi cells, directed by a

set of split points Q = q1, q2, . . . such that for each

cell corresponding to split point qi, the points x in

that cell are nearer to qi than to any other split point

in Q.

Hence, by constructing a tree of Voronoi

diagrams, we can satisfy our two major concerns.

Let’s call such a structure as v_tree. The

top or root node of a v_tree gives a brief summary of

the whole data and is split to many Voronoi cells

which are split as well and so on.

Figure 2: A voronoi diagram depicted in two

dimensions

Construction of v_tree

At each level, find k (2) centre

1. Points must be appropriately spaced and far

2. Use scalable kmeans++ (Bahmani et all., 2012)

or gnat technique (Brin ,1995)

3. Assign all points to either centre based on

distance

4. All points that lie in current to current + eps

boundary(Goel et all., 2015) are considered

affected.

5. Delete extra points stored in parent node to

remove redundancy

Repeat for new sets until requisite number of

partitions found.

Data Structure

A minimal n-voronoi-tree implementation data

structure in c will look like this.

typedef struct member {

int id;

float *val;

} member;

struct v_node {

int level;

int core1,core2;

member *mem1,*mem2,*mem_overlap;

struct v_node *left,*right;

int count_mem1,count_mem2, count_overlap,

total_count;

}

struct v_tree {

int levels;

struct node *head;

}

Head node is the summary of Entire Data.

Each parent node contains summary of points in

child nodes. The exact points are stored until data is

partitioned at level & deleted as soon as we move to

next level.

Note that v_tree might not necessarily be

binary. More than two centres can be chosen.

The leaf nodes are our final partitions , and

going up the tree inherently makes a merging

structure for resultant clusters. Load in each partition

will depend upon the center chosen and distribution

of data in n-dimensional space.

How to choose initial seeds?

1. Select randomly: Choosing centre randomly

doesn’t guarantee or breach anything and

simply leaves thing to the centre chosen and

distribution of data. There is equal probability

of getting each load distribution. Hence the

probability of getting a perfect load balance

tends to zero.

2. GNAT Approach: Suppose we need n seeds.

We start by selecting a point at random. The

next point is chosen such that its distance from

first point is maximum, the third point is chosen

such that its distance from sum of previous two

points is maximum. Similarly forth point should

be the point farthest from sum of first three

points and so on. This approach is good in terms

of load balancing for a big value of n, but

cannot guarantee good balance for small n (~2-

5).

3. Scalable K-Means++ Approach: Suppose k

centre are needed, C be the set of initial seeds,

then

a. Sample a point uniformly at random from the

data points.

b. For each data point p, compute it’s distance

from nearest centre.

c. Choose a m point p using Weighted probability

distribution where a point p is chosen with

probability proportional to D(p)2. Assume it be

new centre

d. If you have k centres, proceed with partitioning,

else repeat 2 & 3

The centres that we get tend to be close to

the centroids of clusters present in data, assuming

there are k-clusters. Load distribution is entirely

dependent on the data; however we can be optimistic

about not getting very biased distribution with real-

life datasets.

Saraswati Mishra. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 8, (Part -5) August 2016, pp.67-71

 www.ijera.com 70 | P a g e

Such a partitioning hugely tends to reduce

the time spent in merging the final clusters as there

will be minimal affected points.

4. More than 2 centre: can be used in

implementation to satisfy various criteria.

a. All the above approaches (or any random or

probability based approach) will tend to good

balancing as we increase number of centre. This

can be proved mathematically using induction.

We receive a perfect balance when numbers of

points equals number of centre i.e. each point is

a partition.

b. In a case when number of partitions is not in

power of 2.

c. Different number of centre at different level can

be used for perfect guided partitioning.

5. How about Median: Points very close to median

and on same axis as centre will produce exact

partitions (similar to kd-tree), however

complexity sumps up to O (kd-tree) +O

(v_tree).

IV. EXPERIMENTATION & RESULTS
We used following environment to execute

test & profile Execution Environment: - Ubuntu

13.04, Intel Core i3 (3rd generation), 2.4GHz (2

cores hyper threaded), 4GB RAM, 3MB L2 Cache.

Compilation Environment: - C, gcc, gdb, gprof,

vampir, Geany IDE .Visualization of output was

done using geogebra.

Test Data-sets: (no. of points x no. of

dimensions, double precision data)

1. 100x2,

2. 700x9,

3. 1500x1024,

4. 4000x1024,

5. 40000x1024

Figure 3 : Comparison of v_tree partitioning result

with four partitions

Figure 4: Comparison of v_tree partitioning result

with eight partitions

We noticed an increase in load bias as

number of partitions increase.

Distribution was almost uniform with

uniform data. However we can see that Kd-tree

(right) provides a better distribution with uniformly

distributed data. However this will decrease with

number of dimensions.

Figure 5 : Comparison of uniform data partitioning

(v_tree)

Figure 6 Comparison of uniform data partitioning

(k-d tree)

Saraswati Mishra. Int. Journal of Engineering Research and Application www.ijera.com

ISSN : 2248-9622, Vol. 6, Issue 8, (Part -5) August 2016, pp.67-71

 www.ijera.com 71 | P a g e

Performance (in approx ~10sec units)

V. CONCLUSION
A conclusion section must be included and

should indicate clearly the advantages, limitations,

and possible applications of the paper. Although a

conclusion may review the main points of the paper,

do not replicate the abstract as the conclusion. A

conclusion might elaborate on the importance of the

work or suggest app We have seen that for higher

dimensionality the approach proposed takes very

less time as compared to kd-tree approach; however

v_tree technique needs a load balanced variant to

boast perfect results.

Our future works will include better load

balancing, comparison of merging time and

distribution time, parallelizing the approach and

implementing a grid based alternative.

APPENDIX
Related Code, Data Sets & Results can be requested

from

https://drive.google.com/file/d/0Bxo9wQ432jhla1dQ

NWFrbnM4bnc/view?usp=sharing

REFERENCES
[1]. Poonam Goyal, Sonal Kumari, Dhruv

Kumar, Sundar Balasubramaniam, Navneet

Goyal, Saiyedul Islam, and Jagat Sesh

Challa. 2015. Parallelizing OPTICS for

Commodity Clusters. In Proceedings of the

2015 International Conference on

Distributed Computing and Networking

(ICDCN '15). ACM, New York, NY, USA,

Article 33

[2]. J. L. Bentley. Multidimensional binary

search trees used for associative searching.

Communications of the ACM, 18(9):509-

517, 1975.

[3]. Franz Aurenhammer (1991). Voronoi

Diagrams – A Survey of a Fundamental

Geometric Data Structure. ACM Computing

Surveys, 23(3):345–405, 1991

[4]. B. Bahmani, B. Moseley, A. Vattani, R.

Kumar, S. Vassilvitskii "Scalable K-

means++" 2012 Proceedings of the VLDB

Endowment.

[5]. S. Brin, Near neighbor search in large

metric spaces, in: Proceedings of the

International Conference on Very Large

Databases (VLDB), 1995.

https://drive.google.com/file/d/0Bxo9wQ432jhla1dQNWFrbnM4bnc/view?usp=sharing
https://drive.google.com/file/d/0Bxo9wQ432jhla1dQNWFrbnM4bnc/view?usp=sharing

